Search This Blog

Sir Issac Newton

galileo galilei, trinity college cambridge, gottfried wilhelm leibniz, isaac newton quotes philosophi naturalis principia mathematica, isaac newton facts, woolsthorpe manor, isaac newton education, opticks, isaac newton books, isaac newton gravity, sir isaac newton facts, what did isaac newton invent, isaac newton accomplishments, sir isaac newton quotes, the chronology of ancient kingdoms amended, isaac newton inventions, isaac newton education, sir isaac newton biography, isaac newton wikipedia, sir isaac newton facts, isaac newton death, isaac newton for kids, TMBM Nadim, The Science, The science all, the science 180, Scientist

Early life:

Isaac Newton was born (according to the Julian calendar, in use in England at the time) on Christmas Day, 25 December 1642 (NS 4 January 1643) "an hour or two after midnight", at wools Thorpe Manor in Wools Thorpe-by-Colsterworth, a hamlet in the county of Lincolnshire. His father, also named Isaac Newton, had died three months before. Born prematurely, Newton was a small child; his mother Hannah Ayscough reportedly said that he could have fit inside a quart mug. When Newton was three, his mother remarried and went to live with her new husband, the Reverend Barnabas Smith, leaving her son in the care of his maternal grandmother, Margery Ayscough. The young Isaac disliked his stepfather and maintained some enmity towards his mother for marrying him, as revealed by this entry in a list of sins committed up to the age of 19: "Threatening my father and mother Smith to burn them and the house over them." Newton's mother had three children from her second marriage.



From the age of about twelve until he was seventeen, Newton was educated at The King's School, Grantham, which taught Latin and Greek and probably imparted a significant foundation of mathematics. He was removed from school and returned to Woolsthorpe-by-Colsterworth by October 1659. His mother, widowed for the second time, attempted to make him a farmer, an occupation he hated. Henry Stokes, a master at the King's School, persuaded his mother to send him back to school. Motivated partly by a desire for revenge against a schoolyard bully, he became the top-ranked student, distinguishing himself mainly by building sundials and models of windmills.

In June 1661, he was admitted to Trinity College, Cambridge, on the recommendation of his uncle Rev William Ayscough, who had studied there. He started as a subsizar—paying his way by performing valet's duties—until he was awarded a scholarship in 1664, guaranteeing him four more years until he could get his MA. At that time, the college's teachings were based on those of Aristotle, whom Newton supplemented with modern philosophers such as Descartes, and astronomers such as Galileo and Thomas Street, through whom he learned of Kepler's work. He set down in his notebook a series of "Quaestiones" about mechanical philosophy as he found it. In 1665, he discovered the generalized binomial theorem and began to develop a mathematical theory that later became calculus. Soon after Newton had obtained his BA degree in August 1665, the university temporarily closed as a precaution against the Great Plague. Although he had been undistinguished as a Cambridge student, Newton's private studies at his home in Woolsthorpe over the subsequent two years saw the development of his theories on calculus, optics, and the law of gravitation.



In April 1667, he returned to Cambridge and in October was elected as a fellow of Trinity. Fellows were required to become ordained priests, although this was not enforced in the restoration years and an assertion of conformity to the Church of England was sufficient. However, by 1675 the issue could not be avoided and by then his unconventional views stood in the way. Nevertheless, Newton managed to avoid it by means of special permission from Charles II (see "Middle years" section below).

His studies had impressed the Lucasian professor Isaac Barrow, who was more anxious to develop his own religious and administrative potential (he became master of Trinity two years later); in 1669 Newton succeeded him, only one year after receiving his MA. He was elected a Fellow of the Royal Society (FRS) in 1672.

Middle years:

Mathematics

Isaac Newton (Bolton, Sarah K. Famous Men of Science. NY: Thomas Y. Crowell & Co., 1889)
Newton's work has been said, "to distinctly advance every branch of mathematics then studied". His work on the subject usually referred to as fluxions or calculus, seen in a manuscript of October 1666, is now published among Newton's mathematical papers.[21] The author of the manuscript De analysis per aequationes numero terminorum infinitas, sent by Isaac Barrow to John Collins in June 1669, was identified by Barrow in a letter sent to Collins in August of that year as:[22]

Mr. Newton, a fellow of our College, and very young ... but of an extraordinary genius and proficiency in these things.

Newton later became involved in a dispute with Leibniz over priority in the development of calculus (the Leibniz–Newton calculus controversy). Most modern historians believe that Newton and Leibniz developed calculus independently, although with very different notations. Occasionally it has been suggested that Newton published almost nothing about it until 1693, and did not give a full account until 1704, while Leibniz began publishing a full account of his methods in 1684. (Leibniz's notation and "differential Method", nowadays recognized as much more convenient notations, were adopted by continental European mathematicians, and after 1820 or so, also by British mathematicians.) But such a suggestion fails to account for the content of calculus in Book 1 of Newton's Principia itself (published 1687) and in its forerunner manuscripts, such as De Motu corporum in gyrum ("On the motion of bodies in orbit") of 1684; this content has been pointed out by critics of both Newton's time and modern times. The Principia is not written in the language of calculus either as we know it or as Newton's (later) 'dot' notation would write it. His work extensively uses calculus in geometric form based on limiting values of the ratios of vanishing small quantities: in the Principia itself, Newton gave demonstration of this under the name of 'the method of first and last ratios' and explained why he put his expositions in this form, remarking also that 'hereby the same thing is performed as by the method of indivisibles'.



Because of this, the Principia has been called "a book dense with the theory and application of the infinitesimal calculus" in modern times and " lequel est Presque tout de ce calcul" ('nearly all of it is of this calculus') in Newton's time. His use of methods involving "one or more orders of the infinitesimally small" is present in his De Motu corporum in gyrum of 1684[27] and in his papers on motion "during the two decades preceding 1684".

Newton in a 1702 portrait by Godfrey Kneller
Newton had been reluctant to publish his calculus because he feared controversy and criticism. He was close to the Swiss mathematician Nicolas Fatio de Duillier. In 1691, Duillier started to write a new version of Newton's Principia, and corresponded with Leibniz. In 1693, the relationship between Duillier and Newton deteriorated and the book was never completed.

Starting in 1699, other members of the Royal Society (of which Newton was a member) accused Leibniz of plagiarism. The dispute then broke out in full force in 1711 when the Royal Society proclaimed in a study that it was Newton who was the true discoverer and labelled Leibniz a fraud. This study was cast into doubt when it was later found that Newton himself wrote the study's concluding remarks on Leibniz. Thus began the bitter controversy which marred the lives of both Newton and Leibniz until the latter's death in 1716.

Newton is generally credited with the generalized binomial theorem, valid for any exponent. He discovered Newton's identities, Newton's method, classified cubic plane curves (polynomials of degree three in two variables), made substantial contributions to the theory of finite differences, and was the first to use fractional indices and to employ coordinate geometry to derive solutions to Diophantine equations. He approximated partial sums of the harmonic series by logarithms (a precursor to Euler's summation formula) and was the first to use power series with confidence and to revert power series. Newton's work on infinite series was inspired by Simon Stevin's decimals.



When Newton received his MA and became a Fellow of the "College of the Holy and Undivided Trinity" in 1667, he made the commitment that "I will either set Theology as the object of my studies and will take holy orders when the time prescribed by these statutes [7 years] arrives, or I will resign from the college." Up till this point he had not thought much about religion and had twice signed his agreement to the thirty-nine articles, the basis of Church of England doctrine.

He was appointed Lucian Professor of Mathematics in 1669 on Barrow's recommendation. During that time, any Fellow of a college at Cambridge or Oxford was required to take holy orders and become an ordained Anglican priest. However, the terms of the Lucian professorship required that the holder not be active in the church (presumably so as to have more time for science). Newton argued that this should exempt him from the ordination requirement, and Charles II, whose permission was needed, accepted this argument. Thus a conflict between Newton's religious views and Anglican orthodoxy was averted.

Optics:

Replica of Newton's second reflecting telescope, which he presented to the Royal Society in 1672
In 1666, Newton observed that the spectrum of colors exiting a prism in the position of minimum deviation is oblong, even when the light ray entering the prism is circular, which is to say, the prism refracts different colors by different angles. This led him to conclude that color is a property intrinsic to light—a point which had been debated in prior years.

From 1670 to 1672, Newton lectured on optics. During this period he investigated the refraction of light, demonstrating that the multicolored spectrum produced by a prism could be recomposed into white light by a lens and a second prism. Modern scholarship has revealed that Newton's analysis and re synthesize of white light owes a debt to corpuscular alchemy.

He showed that colored light does not change its properties by separating out a colored beam and shining it on various objects, and that regardless of whether reflected, scattered, or transmitted, the light remains the same color. Thus, he observed that color is the result of objects interacting with already-colored light rather than objects generating the color themselves. This is known as Newton's theory of color.

Illustration of a dispersion prism separating white light into the colors of the spectrum, as discovered by Newton
From this work, he concluded that the lens of any refracting telescope would suffer from the dispersion of light into colors (chromatic aberration). As a proof of the concept, he constructed a telescope using reflective mirrors instead of lenses as the objective to bypass that problem. Building the design, the first known functional reflecting telescope, today known as a Newtonian telescope, involved solving the problem of a suitable mirror material and shaping technique. Newton ground his own mirrors out of a custom composition of highly reflective speculum metal, using Newton's rings to judge the quality of the optics for his telescopes. In late 1668 he was able to produce this first reflecting telescope. It was about eight inches long and it gave a clearer and larger image. In 1671, the Royal Society asked for a demonstration of his reflecting telescope. Their interest encouraged him to publish his notes, Of Colors, which he later expanded into the work Optics. When Robert Hooke criticized some of Newton's ideas, Newton was so offended that he withdrew from public debate. Newton and Hooke had brief exchanges in 1679–80, when Hooke, appointed to manage the Royal Society's correspondence, opened up a correspondence intended to elicit contributions from Newton to Royal Society transactions, which had the effect of stimulating Newton to work out a proof that the elliptical form of planetary orbits would result from a centripetal force inversely proportional to the square of the radius vector (see Newton's law of universal gravitation – History and De motu corporum in gyrum). But the two men remained generally on poor terms until Hooke's death.


Facsimile of a 1682 letter from Isaac Newton to Dr. William Briggs, commenting on Briggs' "A New Theory of Vision"
Newton argued that light is composed of particles or corpuscles, which were refracted by accelerating into a denser medium. He verged on sound like waves to explain the repeated pattern of reflection and transmission by thin films (Optics Bk.II, Props. 12), but still retained his theory of 'fits' that disposed corpuscles to be reflected or transmitted (Props.13). However, later physicists favored a purely wavelike explanation of light to account for the interference patterns and the general phenomenon of diffraction. Today's quantum mechanics, photons, and the idea of wave–particle duality bear only a minor resemblance to Newton's understanding of light.

In his Hypothesis of Light of 1675, Newton posited the existence of the ether to transmit forces between particles. The contact with the theosophist Henry More, revived his interest in alchemy. He replaced the ether with occult forces based on Hermetic ideas of attraction and repulsion between particles. John Maynard Keynes, who acquired many of Newton's writings on alchemy, stated that "Newton was not the first of the age of reason: He was the last of the magicians." Newton's interest in alchemy cannot be isolated from his contributions to science. This was at a time when there was no clear distinction between alchemy and science. Had he not relied on the occult idea of action at a distance, across a vacuum, he might not have developed his theory of gravity. (See also Isaac Newton's occult studies.)

In 1704, Newton published Optics, in which he expounded his corpuscular theory of light. He considered light to be made up of extremely subtle corpuscles, that ordinary matter was made of grosser corpuscles and speculated that through a kind of alchemical transmutation "Are not gross Bodies and Light convertible into one another, ... and may not Bodies receive much of their Activity from the Particles of Light which enter their Composition?" Newton also constructed a primitive form of a frictional electrostatic generator, using a glass globe.

In an article entitled "Newton, prisms, and the 'optics' of tunable lasers" it is indicated that Newton in his book Optics was the first to show a diagram using a prism as a beam expander. In the same book he describes, via diagrams, the use of multiple-prism arrays. Some 278 years after Newton's discussion, multiple-prism beam expanders became central to the development of narrow-linewidth tunable lasers. Also, the use of these prismatic beam expanders led to the multiple-prism dispersion theory.

Subsequent to Newton, much has been amended. Young and Fresnel combined Newton's particle theory with Huygens' wave theory to show that color is the visible manifestation of light's wavelength. Science also slowly came to realize the difference between perception of color and mathematical optics. The German poet and scientist, Goethe, could not shake the Newtonian foundation but "one hole Goethe did find in Newton's armor, Newton had committed himself to the doctrine that refraction without color was impossible. He therefore thought that the object-glasses of telescopes must forever remain imperfect, achromatism and refraction being incompatible. This inference was proved by Dollond to be wrong."

Mechanics and gravitation:

Further information: Writing of Principia Mathematica


Newton's own copy of his Principia, with hand-written corrections for the second edition
In 1679, Newton returned to his work on celestial mechanics by considering gravitation and its effect on the orbits of planets with reference to Kepler's laws of planetary motion. This followed stimulation by a brief exchange of letters in 1679–80 with Hooke, who had been appointed to manage the Royal Society's correspondence, and who opened a correspondence intended to elicit contributions from Newton to Royal Society transactions. Newton's reawakening interest in astronomical matters received further stimulus by the appearance of a comet in the winter of 1680–1681, on which he corresponded with John Flamsteed. After the exchanges with Hooke, Newton worked out proof that the elliptical form of planetary orbits would result from a centripetal force inversely proportional to the square of the radius vector (see Newton's law of universal gravitation – History and De motu corporum in gyrum). Newton communicated his results to Edmond Halley and to the Royal Society in De motu corporum in gyrum, a tract written on about nine sheets which was copied into the Royal Society's Register Book in December 1684. This tract contained the nucleus that Newton developed and expanded to form the Principia.

The Principia was published on 5 July 1687 with encouragement and financial help from Edmond Halley. In this work, Newton stated the three universal laws of motion. Together, these laws describe the relationship between any object, the forces acting upon it and the resulting motion, laying the foundation for classical mechanics. They contributed to many advances during the Industrial Revolution which soon followed and were not improved upon for more than 200 years. Many of these advancements continue to be the underpinnings of non-relativistic technologies in the modern world. He used the Latin word gravitas (weight) for the effect that would become known as gravity, and defined the law of universal gravitation.

In the same work, Newton presented a calculus-like method of geometrical analysis using 'first and last ratios', gave the first analytical determination (based on Boyle's law) of the speed of sound in air, inferred the oblateness of Earth's spheroidal figure, accounted for the precession of the equinoxes as a result of the Moon's gravitational attraction on the Earth's oblations, initiated the gravitational study of the irregularities in the motion of the moon, provided a theory for the determination of the orbits of comets, and much more.[citation needed]

Newton made clear his heliocentric view of the Solar System—developed in a somewhat modern way, because already in the mid-1680s he recognized the "deviation of the Sun" from the center of gravity of the Solar System. For Newton, it was not precisely the center of the Sun or any other body that could be considered at rest, but rather "the common center of gravity of the Earth, the Sun and all the Planets is to be esteemed the Centre of the World", and this center of gravity "either is at rest or moves uniformly forward in a right line" (Newton adopted the "at rest" alternative in view of common consent that the center, wherever it was, was at rest).

Newton's postulate of an invisible force able to act over vast distances led to him being criticized for introducing "occult agencies" into science. Later, in the second edition of the Principia (1713), Newton firmly rejected such criticisms in a concluding General Scholium, writing that it was enough that the phenomena implied a gravitational attraction, as they did; but they did not so far indicate its cause, and it was both unnecessary and improper to frame hypotheses of things that were not implied by the phenomena. (Here Newton used what became his famous expression "hypotheses non-fingo").

With the Principia, Newton became internationally recognized. He acquired a circle of admirers, including the Swiss-born mathematician Nicolas Fatio de Duillier.

Classification of cubics
Main article: Cubic plane curve
Newton found 72 of the 78 "species" of cubic curves and categorized them into four types.  In 1717, and probably with Newton's help, James Stirling proved that every cubic was one of these four types. Newton also claimed that the four types could be obtained by plane projection from one of them, and this was proved in 1731, four years after his death.



Later life:

Main article: Later life of Isaac Newton
In the 1690s, Newton wrote a number of religious tracts dealing with the literal and symbolic interpretation of the Bible. A manuscript Newton sent to John Locke in which he disputed the fidelity of 1 John 5:7 and its fidelity to the original manuscripts of the New Testament, remained unpublished until 1785.

Even though a number of authors have claimed that the work might have been an indication that Newton disputed the belief in Trinity, others assure that Newton did question the passage but never denied Trinity as such. His biographer, scientist Sir David Brewster, who compiled his manuscripts for over 20 years, wrote about the controversy in well-known book Memoirs of the Life, Writings, and Discoveries of Sir Isaac Newton, where he explains that Newton questioned the veracity of those passages, but he never denied the doctrine of Trinity as such. Brewster states that Newton was never known as an Arian during his lifetime, it was first William Whiston (an Arian) who argued that "Sir Isaac Newton was so hearty for the Baptists, as well as for the Eusebians or Arians, that he sometimes suspected these two were the two witnesses in the Revelations," while other like Hopton Haynes (a Mint employee and Humanitarian), "mentioned to Richard Baron, that Newton held the same doctrine as himself".[66] Brewster's views are, however, severely outdated, encrypted manuscripts written by Newton have been bought by John Maynard Keynes (among others), then deciphered[50] and it became known that Newton has rejected Trinidadians.


Isaac Newton in old age in 1712, portrait by Sir James Thorn hill
Later works—The Chronology of Ancient Kingdoms Amended (1728) and Observations upon the Prophecies of Daniel and the Apocalypse of St. John (1733)—were published after his death. He also devoted a great deal of time to alchemy (see above).

Newton was also a member of the Parliament of England for Cambridge University in 1689–90 and 1701–2, but according to some accounts his only comments were to complain about a cold draught in the chamber and request that the window be closed. He was however noted by Cambridge diarist Abraham de la Prime as having rebuked students who were frightening local residents by claiming that a house was haunted.

Newton moved to London to take up the post of warden of the Royal Mint in 1696, a position that he had obtained through the patronage of Charles Montagu, 1st Earl of Halifax, and then Chancellor of the Exchequer. He took charge of England's great re coining, somewhat treading on the toes of Lord Lucas, Governor of the Tower (and securing the job of deputy comptroller of the temporary Chester branch for Edmond Halley). Newton became perhaps the best-known Master of the Mint upon the death of Thomas Neale in 1699, a position Newton held for the last 30 years of his life. These appointments were intended as sinecures, but Newton took them seriously, retiring from his Cambridge duties in 1701, and exercising his power to reform the currency and punish clippers and counterfeiters.

As Warden, and after wards Master, of the Royal Mint, Newton estimated that 20 percent of the coins taken in during the Great Re coinage of 1696 were counterfeit. Counterfeiting was high treason, punishable by the felon being hanged, drawn and quartered. Despite this, convicting even the most flagrant criminals could be extremely difficult. However, Newton proved equal to the task.

Disguised as a habitue of bars and taverns, he gathered much of that evidence himself. For all the barriers placed to prosecution, and separating the branches of government, English law still had ancient and formidable customs of authority. Newton had himself made a justice of the peace in all the Home Counties—there is a draft of a letter regarding this matter stuck into Newton's personal first edition of his Philosophiæ Naturalis Principia Mathematica which he must have been amending at the time. Then he conducted more than 100 cross-examinations of witnesses, informers, and suspects between June 1698 and Christmas 1699. Newton successfully prosecuted 28 coiners.


Coat of arms of the Newton family of Gunner by, Lincolnshire, afterwards used by Sir Isaac
As a result of a report written by Newton on 21 September 1717 to the Lords Commissioners of His Majesty's Treasury the bimetallic relationship between gold coins and silver coins was changed by Royal proclamation on 22 December 1717, forbidding the exchange of gold guineas for more than 21 silver shillings. This inadvertently resulted in a silver shortage as silver coins were used to pay for imports, while exports were paid for in gold, effectively moving Britain from the silver standard to its first gold standard. It is a matter of debate as whether he intended to do this or not. It has been argued that Newton conceived of his work at the Mint as a continuation of his alchemical work.

Newton was made President of the Royal Society in 1703 and an associate of the French Académie des Sciences. In his position at the Royal Society, Newton made an enemy of John Flamsteed, the Astronomer Royal, by prematurely publishing Flam steed’s Historia Coelestis Britannica, which Newton had used in his studies.

In April 1705, Queen Anne knighted Newton during a royal visit to Trinity College, Cambridge. The knighthood is likely to have been motivated by political considerations connected with the Parliamentary election in May 1705, rather than any recognition of Newton's scientific work or services as Master of the Mint. Newton was the second scientist to be knighted, after Sir Francis Bacon.

Newton was one of many people who lost heavily when the South Sea Company collapsed. Their most significant trade was slaves, and according to his niece, he lost around £20,000.

Towards the end of his life, Newton took up residence at Cranbury Park, near Winchester with his niece and her husband, until his death in 1727.[90] His half-niece, Catherine Barton Conduitt, served as his hostess in social affairs at his house on Jermyn Street in London; he was her "very loving Uncle", according to his letter to her when she was recovering from smallpox.

Death:

Newton died in his sleep in London on 20 March 1727 (OS 20 March 1726; NS 31 March 1727). His body was buried in Westminster Abbey.[93] Voltaire may have been present at his funeral. A bachelor, he had divested much of his estate to relatives during his last years, and died intestate. His papers went to John Conduitt and Catherine Barton. After his death, Newton's hair was examined and found to contain mercury, probably resulting from his alchemical pursuits. Mercury poisoning could explain Newton's eccentricity in late life.

Personal relations
Although it was claimed that he was once engaged, Newton never married. The French writer and philosopher Voltaire, who was in London at the time of Newton's funeral, said that he "was never sensible to any passion, was not subject to the common frailties of mankind, nor had any commerce with women—a circumstance which was assured me by the physician and surgeon who attended him in his last moments". The widespread belief that he died a virgin has been commented on by writers such as mathematician Charles Hutton,[99] economist John Maynard Keynes, and physicist Carl Sagan.

Newton did have a close friendship with the Swiss mathematician Nicolas Fatio de Duillier, whom he met in London around 1689. Their relationship came to an abrupt and unexplained end in 1693, and at the same time Newton suffered a nervous breakdown. Some of their correspondence has survived.

In September of that year, Newton had a breakdown which included sending wild accusatory letters to his friends Samuel Pepys and John Locke. His note to the latter included the charge that Locke "endeavoured to embroil me with women".

Collected from: Wikipedia



Load comments